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Fig. 1. We quantify uncertainty for SVBRDF acquisition from multi-view captures (left) using entropy (right). We significantly accelerate the, otherwise heavy,
computation in the frequency domain (spherical harmonics power spectrum, center), leading to a practical, efficient method.

This paper aims to quantify uncertainty for SVBRDF acquisition in multi-
view captures. Under uncontrolled illumination and unstructured viewpoints,
there is no guarantee that the observations contain enough information to
reconstruct the appearance properties of a captured object. We study this
ambiguity, or uncertainty, using entropy and accelerate the analysis by using
the frequency domain, rather than the domain of incoming and outgoing
viewing angles. The result is a method that computes a map of uncertainty
over an entire object within a millisecond. We find that the frequency model
allows us to recover SVBRDF parameters with competitive performance,
that the accelerated entropy computation matches results with a physically-
based path tracer, and that there is a positive correlation between error
and uncertainty. We then show that the uncertainty map can be applied to
improve SVBRDF acquisition using capture guidance, sharing information
on the surface, and using a diffusion model to inpaint uncertain regions. Our
code is available at https://github.com/rubenwiersma/svbrdf_uncertainty.

Authors’ Contact Information: Ruben Wiersma, rubenwiersma@gmail.com, ETH
Zurich, and Delft University of Technology, and Adobe Research, Switzerland; Julien
Philip, Adobe Research, and Netflix Eyeline Studios, UK; Miloš Hašan, Adobe Research,
USA; Krishna Mullia, Adobe Research, USA; Fujun Luan, Adobe Research, USA; Elmar
Eisemann, Delft University of Technology, The Netherlands; Valentin Deschaintre,
deschain@adobe.com, Adobe Research, UK.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International License.
SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1540-2/2025/08
https://doi.org/10.1145/3721238.3730592

CCS Concepts: • Computing methodologies→ Reflectance modeling;
3D imaging; Appearance and texture representations.

Additional Key Words and Phrases: Uncertainty, Inverse rendering

ACM Reference Format:
Ruben Wiersma, Julien Philip, Miloš Hašan, Krishna Mullia, Fujun Luan,
Elmar Eisemann, and Valentin Deschaintre. 2025. Uncertainty for SVBRDF
Acquisition using Frequency Analysis. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Conference Papers (SIGGRAPH
Conference Papers ’25), August 10–14, 2025, Vancouver, BC, Canada. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3721238.3730592

1 Introduction
Recovering realistic appearance properties for digital objects is in-
herently challenging. We propose to estimate the uncertainty of the
process, given a set of views of an object and information about
the incident lighting. This enables applications such as viewpoint
planning and information sharing for improved acquisition.

Appearance is typicallymodeled as a six-dimensional function, de-
pending on the incoming and outgoing light directions and locations
on the surface. Accurately reconstructing this high-dimensional
function requires many samples and, ideally, control of both lighting
and camera positions. Such capture requires complex and expensive
hardware, such as light stages, and is particularly difficult for on-site
capture. It is more convenient to passively photograph the object
from a set of viewpoints, without control of the lighting.
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Passive captures often lead to ambiguity about the material of an
object, as shown in Figure 2. Depending on the lighting and view-
point, it may be hard to distinguish matte from glossy materials. On
complex, curved shapes, such ambiguities can arise, e.g., from oc-
clusion, shadowing, and missing viewpoints. In this work, our main
goal is to estimate the ambiguity, or uncertainty, when recovering
SVBRDF parameters. The result is a map on the surface, quantifying
how certain we are about the parameter estimates (Figure 1). We
demonstrate that this information can improve SVBRDF recovery
through capture guidance, information sharing, and inpainting of
uncertain areas. We also show that our contributions can be used
for fast recovery of SVBRDF parameters.

To quantify uncertainty, we use entropy. Entropy measures how
‘spread out’ a probability distribution is: in the overcast setting (left
of Figure 2), the planes being glossy or matte is equally likely. The
probability distribution is uniform, leading to high entropy. In the
setting on the right, it is very unlikely that the plane on the right
is matte. The probability distribution is concentrated around the
glossy material, resulting in low entropy. To compute entropy, we
require knowledge of the posterior probability distribution over
the entire space of possible parameters. This requires rendering the
scene from every input viewpoint for all possible parameter combi-
nations. Prior approaches for estimating uncertainty handle this by
sparsely sampling the parameter space. For example, Lensch et al.
[2003b] and Goli et al. [2024] use the inverse of the Hessian around
the optimized parameters as a proxy for uncertainty. This approach,
however, is local in parameter space and requires running an opti-
mization first. Zhou et al. [2024] sample the full parameter space
using stochastic particle-optimization sampling (SPOS) [Zhang et al.
2020]. While this approach considers the full parameter space, it is
slow to compute.
Rather than focusing on reducing the number of samples, we

accelerate the computation of the probability for each parameter
combination using frequency-domain analysis [Ramamoorthi and
Hanrahan 2001]. The resulting approach is lightweight and highly
parallelizable, making entropy as a measure of uncertainty practical
for SVBRDF recovery. The frequency-domain analysis considers
reflection functions as convolutions of the BRDF over the incom-
ing light, easily computed in the frequency domain. We show that
the entire reflection function can be analyzed within the frequency
domain, given careful approximations. This eliminates repeated
transforms to the angular domain. Second, we show that the analy-
sis of uncertainty within the frequency domain can be accelerated
by only considering the power spectra of spherical harmonics. We
also find that uncertainty is determined by two parameters, the
specular coefficient and roughness, further reducing the complex-
ity of the problem. To be practical, these contributions require a
spherical-harmonics transform for sparse and irregular samples of
the incoming and outgoing radiance, as these are sampled through
unstructured photographs. We therefore propose a robust spherical-
harmonics transform that uses least-squares fitting on sparse and
irregular points, with regularization specialized for natural lighting.

We validate our method by comparing our entropy estimation to
entropy computed with a state-of-the-art path tracer [Jakob et al.
2022]. We find that our approach correlates strongly (𝜌 = 0.9) and
runs in a fraction of the time (1/700 000). We also evaluate the

Fig. 2. Passive capture can lead to ambiguity about the material of an object.
Which plane is glossy and which is matte? While it is hard to see in the left
scene, the materials are the same in both scenes (left matte, right glossy).

relationship between entropy and reconstruction error and show
three applications of our uncertainty evaluation: capture guidance,
information sharing between certain and uncertain areas on the sur-
face, and inpainting regions with high uncertainty using a diffusion
model. Finally, we demonstrate that our framework can be used
to optimize SVBRDF parameters with state-of-the-art relighting
results and a 10x speedup and use these results to initialize other
approaches.

In summary, we propose to compute uncertainty for the common
passive capture setup, through the following contributions:

• Uncertainty for SVBRDF acquisition through entropy.
• A practical and fast entropy computation, following from
an analysis in the frequency domain and power spectrum
simplification.

• Demonstration of applications for uncertainty.

2 Related Work
We provide a detailed overview of related work in uncertainty es-
timation for (SV)BRDF recovery and a brief analysis of how ap-
proaches for (SV)RBDF recovery deal with ambiguity.

2.1 Uncertainty Estimation
Similar to us, prior works study uncertainty from a Bayesian per-
spective, analyzing the posterior probability distribution over BRDF
parameters. Most works sample parameters sparsely, to avoid costly
rendering operations. We distinguish approaches that sample the pa-
rameter space locally (Laplace’s approximation) or globally. Laplace’s
approximation assumes the posterior follows a Gaussian distribu-
tion centered around the optimal parameters and uses the inverse
of the Hessian as a covariance matrix, representing uncertainty.
Lensch et al. [2003b] use this approach to select viewpoints that
minimize uncertainty. In another work, Lensch et al. [2003a] use
the covariance matrix to optimally split clusters of materials. Re-
cently, Goli et al. [2024] use Laplace’s approximation to quantify
uncertainty for NeRFs [Mildenhall et al. 2020]. They also show a cor-
relation between uncertainty and absolute error. This information
is used to remove spurious geometry. In our work, we approximate
the rendering equation, which allows us to sample the posterior
probability distribution globally along a dense grid. We directly use
entropy to measure uncertainty, rather than the covariance matrix.

Zhou et al. [2024] sample the full parameter space using stochastic
particle-optimization sampling (SPOS) [Zhang et al. 2020]. SPOS
optimizes samples through particle-optimization to be distributed
according to a target function that resembles the posterior. Then, the
variance of these samples is used as a proxy for uncertainty. These
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Fig. 3. An overview of our pipeline showing input, output, and the proposed algorithm. The input to our approach is a set of photographs of an object from
multiple viewpoints and the associated camera extrinsics and intrinsics. We also provide the input lighting as an environment map and object geometry. We
first estimate spherical harmonic coefficients on both the incoming and outgoing radiance and then estimate the effect of different BRDF filters within the
power spectrum. This is used to compute a measure of uncertainty for the predicted parameters of the acquisition.

contributions are orthogonal to our work. Because we evaluate the
rendering equation in the frequency domain, our approach takes
roughly one millisecond to compute uncertainty, while Zhou et al.
[2024] report “a couple to 20 minutes” on comparable hardware.
Rodriguez-Pardo et al. [2023] used Monte-Carlo dropout to esti-

mate uncertainty in the context of single-view material estimation,
taking inspiration from Bayesian methods ([Gal and Ghahramani
2016]). Our method is designed for multi-view captures and mea-
sures uncertainty in the input captures, rather than the uncertainty
of a predictive model.

2.2 Frequency-Based Light Transport
Ourwork builds on the idea that BRDFs can be expressed as low-pass
filters in the frequency domain [Durand et al. 2005; Ramamoorthi
and Hanrahan 2001]. This concept is widely adopted in interactive
rendering, e.g., [Bagher et al. 2013]. We apply it in the context of
material acquisition, where it has been used for controlled illumina-
tion [Aittala et al. 2013; Ghosh et al. 2007], controlling the frequency
of light patterns to estimate the BRDF filter parameter through de-
convolution of the reflected light. We do not assume control of
the light and operate in the spherical-harmonics frequency domain
rather than the Fourier domain [Aittala et al. 2013] or custom basis
functions [Ghosh et al. 2007]. Our analysis therefore works with
arbitrary natural lighting environments.
Our work is closest in spirit to that of Ramamoorthi and Hanra-

han [2001]. Ramamoorthi and Hanrahan’s analysis allows one to
conclude whether the BRDF recovery is well-posed or not, given
prior knowledge of the width of the normal distribution function.
Our uncertainty estimation is easier to apply as it gives a more pre-
cise and continuous answer to the question of uncertainty and does
not assume prior knowledge of the material. Second, our approach
works directly in the frequency domain and supports arbitrary light
setups by using a robust spherical-harmonics transform. Finally,
we improve the BRDF model to include shadowing and masking
and demonstrate that our improvements to the method result in
competitive performance in (SV)BRDF capture.

2.3 (SV)BRDF Recovery
Our method operates in the context of (SV)BRDF recovery using
optimization-based methods [Loubet et al. 2019; Munkberg et al.

2022; Nimier-David et al. 2021; Vicini et al. 2022]. These methods
optimize BRDF parameters and, optionally, geometry and lighting,
to reproduce the appearance of a set of input views. Existing ap-
proaches try to reduce the ambiguity in their capture, which can
lead to suboptimal convergence. A direct way to reduce ambiguity is
to use many photographs and controlled lighting [Aittala et al. 2013;
Dupuy and Jakob 2018; Nam et al. 2018] or object orientations [Dong
et al. 2014]. Some rely on specialized hardware to capture polarimet-
ric information [Hwang et al. 2022]. Others use prior knowledge
to compensate for limited information, such as stationarity of the
captured materials [Aittala et al. 2016, 2015; Henzler et al. 2021; Xu
et al. 2016].

Another way to reduce ambiguity is to use data-based priors. This
allows the capture of (SV)BRDFs from as little as one image [De-
schaintre et al. 2018, 2019, 2020; Guo et al. 2021; Li et al. 2017; Luo
et al. 2024; Martin et al. 2022; Shah et al. 2023; Shi et al. 2020; Vecchio
et al. 2023; Zhou et al. 2023; Zhou and Kalantari 2021; Zhou and
Khademi Kalantari 2022]. For material acquisition on curved sur-
faces, approaches have been proposed to extract material parameters
from single, multiple flash, or multi-focal photographs [Boss et al.
2020; Deschaintre et al. 2021; Fan et al. 2023; Li et al. 2018]. More
recently, diffusion priors have been used to complete the missing
lighting information in the context of acquisition [Lyu et al. 2023].

Our method is intended to work in conjunction with general ma-
terial acquisition approaches. In our applications, we show several
ways how our uncertainty analysis can be used to improve acquisi-
tion, both during optimization (e.g., by sharing information) and by
using data-based priors (e.g., through diffusion model inpainting).

3 Method
Our goal is to evaluate uncertainty in material reconstruction dur-
ing a ‘passive’ capture. The result is a mapping on the surface that
denotes where the signal is insufficient to guarantee an accurate
reconstruction. The input to our method is a set of views from multi-
ple viewpoints and we assume that the camera extrinsics, intrinsics,
object geometry and HDR environmental lighting are known but
not controlled.

Figure 3 provides an overview of our method. In this section, we
work our way back from the desired output, entropy, to a practi-
cal and efficient implementation. Entropy requires evaluating the
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reconstruction error of many material parameters for the entire
surface, which we accelerate by building on the signal processing
framework proposed by Ramamoorthi and Hanrahan [2001] (fre-
quency domain analysis). We analyze the uncertainty problem in the
frequency domain and find that, given some approximations, we can
evaluate entropy entirely using the power spectrum of the spherical
harmonics representation of the incoming and outgoing radiance.
Finally, we show how to robustly transform sparse and irregular
radiance samples in the angular domain to spherical harmonics.

3.1 Entropy and Uncertainty
Entropy, in the context of information theory, measures the un-
certainty about an unknown variable 𝑥 over the possible states
𝑋 [Shannon 1948]. Given a probability distribution 𝑝 (𝑥), entropy is
defined in the discrete setting as

𝐻 = −
∑︁
𝑥∈𝑋

𝑝 (𝑥) log𝑝 (𝑥) . (1)

Intuitively, entropy measures the ‘spread’ of the probability dis-
tribution 𝑝 (𝑥). For example, a uniform distribution has maximum
entropy and a narrow, concentrated distribution has low entropy.
We are interested in measuring the uncertainty over the continuous
parameter combinations 𝝍 for a BRDF at each point on the surface
(e.g., roughness, metallicity, base color), given the observed outgoing
radiance 𝐵 and incoming radiance 𝐿. For simplicity of exposition, we
will consider 𝑛 evenly spaced discrete parameter choices𝜓 . This dis-
cretization can be adapted to incorporate perceptual non-linearity1.
Computing continuous entropy also requires discretization, because
an analytical solution is not available for the integral, and results in
the same formulation for entropy we derive here.

First, we need to know the likelihood that the parameters𝜓 explain
the observations 𝐵, given 𝐿, 𝑝 (𝜓 |𝐵, 𝐿). This likelihood can be derived
using Bayes’ rule from 𝑝 (𝐵 |𝜓, 𝐿), the probability that we observe
radiance 𝐵, given the parameters𝜓 and incoming light 𝐿

𝑝 (𝜓 |𝐵, 𝐿) ∝ 𝑝 (𝐵 |𝜓, 𝐿)𝑝 (𝜓 ). (2)

In our experiments, we assume that 𝑝 (𝜓 ) is uniform, but one could
include priors on materials based on real-world data without af-
fecting the remainder of this discussion. If our measurements and
models were perfect, 𝑝 (𝐵 |𝜓, 𝐿), would be 1 for the radiance obser-
vation predicted by our BRDF model and 0 otherwise. However, we
encounter measurement noise and our renders are approximate. If
we assume this error follows a Gaussian distribution with variance
𝜎2, we can model the associated probability distribution as

𝑝 (𝐵 |𝜓, 𝐿) = 1
𝜎
√

2𝜋
exp

[
−𝑑 (𝐵, 𝑟 (𝜓, 𝐿))

2𝜎2

]
, (3)

where 𝑑 is the distance function between the renders 𝑟 (𝜓, 𝐿) and
the observed radiance 𝐵. Typically, 𝑑 is the 𝐿1- or 𝐿2 norm over
the difference between the set of views and their corresponding
renders for every viewpoint. To compute entropy, we need to nor-
malize 𝑝 (𝜓 |𝐵, 𝐿) to be a proper probability distribution, since, as a

1Because we use the roughness parameterization from Burley [2012] (Eq. 11 in the
Supplement), perceptual nonlinearity is already partly accounted for (p.15 in Burley
[2012]).

likelihood, it does not integrate to one:

𝑝 (𝜓 |𝐵, 𝐿) = 𝑝 (𝜓 |𝐵, 𝐿)∑
𝜓 ∈Ψ 𝑝 (𝜓 |𝐵, 𝐿)

. (4)

Finally, we would like the maximum entropy to be one for inter-
pretability. Therefore, we divide entropy by log(𝑛), the maximum
entropy corresponding to a uniform distribution

𝐻 = − 1
log(𝑛)

∑︁
𝜓 ∈Ψ

𝑝 (𝜓 |𝐵, 𝐿) log 𝑝 (𝜓 |𝐵, 𝐿). (5)

Figure 4 shows three examples of likelihood over the roughness,
𝛼 , and the specular coefficient𝐾𝑠 , given different lighting conditions
and ground-truth parameters (marked by a red dot). The heading
𝐻 denotes the corresponding entropy. An important observation
is that these distributions do not follow a Gaussian distribution,
which is the assumed distribution in Laplace’s approximation. This
demonstrates the importance of sampling the full parameter space,
rather than a local approximation.

3.2 Reflection as a Convolution
To compute entropy, we must evaluate the rendering function 𝑟
for the entire parameter space and for all viewpoints. For example,
evaluating Equation 5 at 16 intervals per parameter (𝑛 = 4096) for
60 viewpoints requires over 45 minutes with Mitsuba, a highly opti-
mized path tracer. To make our approach practical, we approximate
the rendering equation using spherical harmonics, based on the
signal processing framework for inverse rendering by Ramamoor-
thi and Hanrahan [2001]. Ramamoorthi and Hanrahan show that
the reflection function can be approximated with a spherical con-
volution of the BRDF over the incoming radiance. Assuming an
isotropic microfacet Torrance and Sparrow [1967] BRDF, combined
with a Lambertian term, they derive the following approximation
for outgoing radiance 𝐵 at point 𝑝 in the view direction 𝜔𝑜

𝐵(𝑝,𝜔𝑜 ) ≈ 𝐾𝑑𝐸 (𝑝) + 𝐾𝑠𝐹 (𝜃𝑜 ) [𝑆𝛼 ∗ 𝐿(𝑝)]𝜔𝑜
, (6)

where 𝐾𝑑 and 𝐾𝑠 are diffuse and specular terms; 𝐸 (𝑝) is the irradi-
ance integrated over the hemisphere; 𝐹 (𝜃𝑜 ) is a simplified Fresnel
term, which only depends on the outgoing direction; 𝐿(𝑝) is the
incoming radiance; and 𝑆𝛼 is a filter parametrized by the normal dis-
tribution width, 𝛼 . This filter is derived from the normal distribution
function of the surface. The ∗ operator represents convolution. We
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Fig. 4. Examples of the likelihood and entropy 𝐻 for several parame-
ter/lighting combinations. Left: An ideal situation, where the lighting is
a dirac delta. Center: A situation where the lighting is too low-frequency to
recover a good 𝛼 value. Right: A situation where the incoming radiance is
ideal, but the specular component is too low to get a proper recovery for 𝛼 .
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provide a derivation of this approximation in the Supplement and de-
tail there how to integrate the Shadowing and Masking terms [Pharr
et al. 2023] into the convolution perspective, which improves ac-
curacy for high-roughness materials. The microfacet model that
underlies this reflection model is still used in state-of-the-art inverse
rendering research [Hasselgren et al. 2022; Munkberg et al. 2022;
Sun et al. 2023] using the parameters from the Disney Principled
BRDF [Burley 2012]. In the Supplement, we show how to map the
Principled BRDF parameters to our model and in our experiments,
we validate that the model performs on par with a state-of-the-art
path tracer for inverse rendering.

3.3 Frequency Domain Analysis
Spherical harmonics-based rendering already significantly acceler-
ates the evaluation of our uncertainty metric. We propose to go one
step further for uncertainty estimation. The implementation of the
rendering equation described in Equation 6 computes convolution
using spherical harmonics, but returns to the angular domain to
evaluate radiance samples of 𝐵. Instead, we propose to evaluate the
error function 𝑑 within the frequency domain, by first transform-
ing the outgoing radiance 𝐵 to the frequency domain. This yields
a significant speedup, as we only need to transform the outgoing
radiance to the frequency domain once, rather than computing the
inverse transform for every parameter combination. Moreover, we
can evaluate the loss in the low-dimensional power spectrum, which
allows us to evaluate all parameter combinations in parallel. The
resulting speedup is of multiple orders of magnitude. This comes
at the cost of some approximations, which we detail in this section.
We show how to transform the outgoing radiance to the frequency
domain in the next section.

The first required approximation is to omit the Fresnel, shadow-
ing, and masking terms (detailed in the Supplement). These terms
are applied as a pointwise multiplication in the angular domain,
which is difficult to compute in the frequency domain. In Section 4.2,
we investigate the impact of this approximation and find that it is ac-
ceptable for uncertainty estimation. We can now rewrite Equation 6
fully in the frequency domain, where 𝐿ℓ𝑚 denotes the spherical
harmonic coefficients for the incoming radiance and 𝐵𝜓

ℓ𝑚
the co-

efficients for the predicted outgoing radiance, given parameters
𝜓 = (𝐾𝑑 , 𝐾𝑠 , 𝛼)

𝐵
𝜓

ℓ𝑚
=

{
𝜋−

1
2𝐾𝑑𝐸 (𝑝) + 𝐾𝑠𝐿00, if ℓ = 0,

𝐾𝑠𝑒
−(𝛼ℓ )2

𝐿ℓ𝑚, otherwise.
(7)

From this expression, we make two observations: (1) We cannot
recover the ratio between 𝐾𝑑 and 𝐾𝑠 from degree ℓ = 0 alone, as
we have two unknowns and only one coefficient. (2) 𝛼 has no effect
on degree ℓ = 0. It follows that we can only recover 𝐾𝑠 and 𝛼 from
degrees ℓ > 0. Once 𝐾𝑠 is known, we can estimate 𝐾𝑑 from degree
ℓ = 0. Put simply, once we know the contribution of the specular
component, we can recover the diffuse component exactly, up to
measurement error. This leads to an important insight: we can
reduce uncertainty evaluation to the specular component
parameters 𝐾𝑠 and 𝛼 . This simplification comes naturally in the
frequency domain, because we can limit our analysis to degrees
ℓ > 0, but would be challenging in the angular domain.

3.3.1 Power spectrum. We propose to further simplify our analysis
using the power spectrum of the spherical harmonics coefficients
of the incoming and outgoing radiance. The power spectrum of the
incoming radiance 𝐿 can be computed per degree from the spherical
harmonic coefficients

𝑆𝐿 (ℓ) =
ℓ∑︁

𝑚=−ℓ
𝐿2
ℓ𝑚 (8)

The power spectrum is invariant to rotations of the coordinate sys-
tem, which, in our context, makes it invariant to slight perturbations
of the normals at each point. Using Equation 7, we can compute the
power spectrum for a hypothetical outgoing radiance for degrees
ℓ > 0, given a set of parameters𝜓 as

𝑆𝐵𝜓 (ℓ) =
ℓ∑︁

𝑚=−ℓ
(𝐾𝑠𝑒−(𝛼ℓ )2

𝐿ℓ𝑚)2 (9)

= 𝐾2
𝑠 𝑒

−2(𝛼ℓ )2
ℓ∑︁

𝑚=−ℓ
𝐿2
ℓ𝑚 = 𝐾2

𝑠 𝑒
−2(𝛼ℓ )2

𝑆𝐿 (ℓ) (10)

We can now express the error function 𝑑 , with 𝜓 = (𝐾𝑠 , 𝛼), based
on the error between the observed power spectrum and predicted
power spectrum

𝑑 (𝐵, 𝑟 (𝜓, 𝐿)) =
ℓ∗∑︁
ℓ=1

(𝑆𝐵 (ℓ) − 𝐾2
𝑠 𝑒

−2(𝛼ℓ )2
𝑆𝐿 (ℓ))2 (11)

ℓ = 0 is left out, because it does not contribute to uncertainty.
Using the power spectrum reduces the number of summands in this
equation from (ℓ∗ +1)2 −1 to ℓ∗, because we do not need to evaluate
Equation 7 for all coefficients. This lets us parallelize the evaluation
of the objective for many parameter combinations and locations on
the surface, making evaluation near instantaneous (see Section 4).

The combination of entropy with frequency analysis allows us to
derive similar observations to Ramamoorthi and Hanrahan [2001],
as summarized in the Supplement, Section D.1. For example, un-
certainty is high when the lighting contains only low frequencies,
because many roughness values would give similar results (Figure 4,
center). Low albedo also causes high uncertainty, because less light
is reflected, amplifying the relative effect of measurement noise
(Figure 4, right).

3.4 Fitting Spherical Harmonic Coefficients
To analyze the reflection function in the frequency domain, we need
a spherical harmonics transform for the incoming and outgoing
radiance samples. However, the samples of outgoing radiance are
captured in a multi-view capture setup, meaning they are sparse
and irregularly distributed on the upper hemisphere. The typical
approach would be to fit spherical harmonic coefficients using least-
squares (see Supplement). However, we find that naive least-squares
fitting is insufficient to recover BRDF parameters in the frequency
domain (detailed in the Supplement). We address this by adding
a weighted 𝐿2 norm on the spherical harmonic coefficients in the
least-squares formulation

(Y⊺Y + 𝜆W)c = Y⊺f, (12)
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where f is a vector of 𝑛 discrete samples of the signal, Y is a matrix
of size 𝑛 × (ℓ∗ + 1)2 containing the spherical harmonics evaluated at
the sampling points, and c is a vector of the (ℓ∗ + 1)2 coefficients we
want to find.W is a diagonal weight matrix. If constant, this weight
matrix leads to poor fitting as the regularization is too strong on
the lower spherical-harmonics degrees. We set the weight equal
to 𝑒ℓ , increasing the strength of regularization for higher spheri-
cal harmonics degrees. This is supported by the observation that
many natural images have a power spectrum with exponential de-
cay [Fleming et al. 2003]. Intuitively, this regularizer encourages
filling unknown regions with low-frequency information. We weigh
the samples based on their elevation angle 𝜃 with | cos(𝜃 ) |, since ob-
servations at grazing angles are more likely to present measurement
error.

Aliasing and ringing. The incoming signal should be bandlimited
to roughly 𝑣

1
2 to avoid aliasing, where 𝑣 is the number of input views.

We ensure this is the case for the incoming radiance by filtering the
input environment map with the BRDF function for 𝛼 ′ = 𝑣−

1
2 . Our

uncertainty and parameter estimation is therefore approximate for
𝛼 < 𝛼 ′. A more in-depth analysis is provided in the Supplement. In
practice, we find that the loss in accuracy is acceptable in comparison
to the gains in efficiency (subsection 4.2). Ringing, which is often
an issue for spherical-harmonics based approaches [Sloan 2017],
does not impact our method, because we do not represent the BRDF
directly as spherical harmonics, but fit a parametric BRDF model
to the first 𝑙∗ degrees in the power spectrum. The pre-filtering and
regularization of spherical-harmonics fitting ensure that ringing
does not impact how we handle incoming and outgoing radiance.

4 Experiments
Implementation. We implement ourmethod in PyTorch. Mitsuba 3

[Jakob et al. 2022] is used to render results and as a reference method.
Each timing result is computed on an NVIDIA RTX4090 GPU and
32-core Intel Core i9-14900KF CPU. Code for our experiments is
available at https://github.com/rubenwiersma/svbrdf_uncertainty.

Datasets and tasks. The experiments are performed on Stanford
ORB [Kuang et al. 2023] and on synthetic scenes. Stanford ORB
is an in-the-wild benchmark that contains fourteen objects, each
captured three times in different scenes (lighting environments),
selected from a total of seven scenes. The lighting environment is
captured through a chrome ball and stored as a lat-long environment
map. Each object is also scanned in a separate stage, providing high-
quality geometry. For our evaluation, we focus on the (SV)BRDF
recovery step and use the provided geometry.

For the synthetic benchmark, we gathered a selection of fifteen ob-
jects with spatially varying BRDF textures for base color, roughness
and metallicity. The benchmark is rendered with four environment
maps representing varying challenges: two indoor scenes, one out-
door scene with a clear sky and sun, and one overcast outdoor
scene. Because ground-truth material textures are available for the
synthetic scenes, we can quantitatively evaluate our optimization re-
sults and validate uncertainty directly on the optimized parameters.
The objects are rendered in Mitsuba at 512 × 512 resolution and 256

Table 1. Benchmark Comparison: Stanford ORB [Kuang et al. 2023] Relight-
ing. Each method has access to the ground-truth lighting and geometry. See
supplement for additional methods and different acquisition conditions.

PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓ Time

NVDiffRec [Munkberg et al. 2022] 24.319 31.492 0.969 0.036 142.14s
Mitsuba [Jakob et al. 2022] 26.601 34.195 0.977 0.032 52.49s
SH Model 26.525 33.796 0.977 0.029 5.07s
SH Model - Power Spectrum 24.494 31.215 0.971 0.035 1.78s

SH Model init + Mitsuba (1 epoch) 26.918 34.386 0.978 0.031 16.07s

Table 2. Synthetic benchmark: Mitsuba vs SH Model - PSNR to ground-
truth and correlation between SH-model entropy and error for Mitsuba.

Photo Studio Museum Overcast Rural Road Avg. Time

Mitsuba 17.07 17.69 16.35 17.32 17.11 74.54s
Mitsuba global sharing 18.07 18.38 17.96 17.27 17.92 77.81s

SH Model 15.23 15.63 15.60 16.55 15.75 3.09s
SH Model global sharing 17.34 18.10 18.11 18.95 18.13 3.15s

Error-Entropy correlation 0.27 0.20 0.19 0.24 0.22

samples per pixel. Renders and ground-truth views for both Stanford
ORB and the synthetic benchmark are included in the Supplement.

4.1 Quality of Inverse Rendering
As a first validation, we are interested in the performance of the
spherical-harmonics model (SH model) evaluated in the angular do-
main, including our proposed additions for shadowing and masking,
on the task of inverse rendering. This validates that the SH model
is a relevant proxy for more recent and exact models in inverse ren-
dering and lets us evaluate the model without the approximations
required for the power spectrum simplification. We will also use
the SH model in our applications of entropy, where this model acts
as a baseline to compare the applications with. We optimize PBR
material textures to match renderings from multiple views (512x512
textures of base color, roughness, metallicity), UV-mapped to the
surface. We use a simple mapping between the PBR materials and
the parameters used in the SH model, which is described in the
Supplement. The parameters are optimized using gradient descent
with an Adam optimizer that minimizes an L1 reconstruction loss
and a TV-norm regularizer in texture space weighted by 1 × 10−2.
Our main comparison target is Mitsuba 3 [Jakob et al. 2022], a

complete differentiable path tracer. When optimizing with Mitsuba,
we sample one ray per pixel in each view and randomly select a
batch of rays per optimization step for better convergence. Each
primary ray is sampled 32 times to sample reflection directions well.
The relighting results on Stanford ORB are shown in Table 1 and
visual comparisons in Figure 5. We find that our SH model performs
on par with Mitsuba but requires only 1/10 of the time despite little
optimization on our side, as we use pure PyTorch. Our power spec-
trum variant, which ignores Fresnel, shadowing, and masking, still
performs on par with NVDiffRec, with a 30-fold speedup compared
to Mitsuba. On the synthetic benchmark, we compare the optimized
textures to the ground-truth textures used to render the dataset.
The results are presented in Table 2 and visual comparisons in Fig-
ure 6 and the Supplement. The SH Model achieves 1.36dB lower
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Fig. 5. Material recovery results on Stanford ORB for Mitsuba (52.49s on
average), the SH Model and our proposed global sharing application (5.07s
on average).

PSNR than Mitsuba on average. The results for Mitsuba are the best-
case scenario, given that the dataset was rendered with Mitsuba,
using the same BRDF model used for material estimation. More-
over, the dataset contains particularly challenging objects for our
method (e.g., with significant interreflections). Split out over base
color (Mitsuba: 20.54dB, SH: 18.77dB), roughness (Mitsuba: 17.84dB,
SH: 14.71dB) and metallicity (Mitsuba: 12.94dB, SH: 13.78dB), we
find that roughness is particularly challenging for the SH model.
This is expected, because the effect of roughness is approximated
by the SH model. Given that our goal is to estimate uncertainty, we
find the performance of the SH-model on this stress-test acceptable.
In subsection 5.2, we discuss how to improve these results using
information sharing (‘global sharing’ rows in Table 2).

4.2 Quality of Approximate Entropy
Our method simplifies the reflection equation, so it can be evaluated
in the power spectrum of spherical harmonics. This yields signifi-
cant performance gains, but involves approximations. To study the
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Fig. 6. Material recovery results on the synthetic dataset for Mitsuba, the
SH Model, and the SH Model with global sharing enabled by entropy. We
see that global sharing helps smooth and improve the results obtained with
the SH Model without blurring the maps.

validity of these approximations, we compare the entropy computed
with our method to the entropy computed using Mitsuba and a vari-
ant of our method that evaluates the reconstruction error in the
angular instead of the frequency domain. This allows us to evaluate
the signal-processing framework for inverse rendering without ad-
ditional approximations. While using a path-tracing renderer like
Mitsuba to compute entropy is impractical for most use cases, it
provides a close proxy for ‘ground-truth’ uncertainty.

We compute entropy for every scene in Stanford ORB with each
approach and use the Pearson correlation coefficient 𝜌 between
the entropy maps as a quality measure. We do not compare exact
entropy values, as both methods compute the loss in a different
space, making it difficult to exactly compare the resulting probabil-
ity distributions. For Mitsuba, we discretize the parameter space into
8×8×8 parameter combinations (roughness, metallicity, base color)
and 8×8 for our method (specularity and roughness, see explanation
below Equation 7). We find a high correlation between entropy com-
puted with Mitsuba and both our method evaluated in the angular
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Input Mitsuba SH Model Input Mitsuba SH Model

Fig. 7. Entropy estimation results on Stanford ORB for Mitsuba (5m50s on
average) and our method (0.0005s on average). This ensures our approxima-
tion still produces entropy close to that computed, slower, with Mitsuba

domain 𝜌 = 0.94 and in the power spectrum 𝜌 = 0.88 as shown in
Table 3. This validates that the entropy we compute with our power
spectrum based model is representative of one computed with a
physically-based renderer, which confirms that our approximations
are permissible for uncertainty. Visual comparisons of entropy in
Figure 7 confirm these findings. Further, as our power spectrum
approximation is parallelizable, we obtain extreme speedups over
both the angular-domain approach (3, 320×) and Mitsuba (700, 000×)
making uncertainty estimation practical. For a higher (and more
accurate) sampling density of 16 × 16 × 16, Mitsuba takes roughly
47 minutes, the angular-domain approach 13.2𝑠 , and our power-
spectrum method only 0.0006𝑠 .

4.3 Entropy and Error
An important part of our motivating argument is that high certainty
is predictive of low error. This makes uncertainty useful for various
applications, e.g., information sharing across areas, or inpainting
of uncertain areas using a diffusion model. We argue that regions
with high uncertainty are more likely to converge to an incorrect
parameter, simply because an incorrect parameter yields a similar
error to the correct parameter. However, an uncertain region does
not necessarily converge to an incorrect result: the correct parameter
choice could still have the maximum likelihood, even by a small
margin, or the optimization could converge on the correct choice by
chance. We therefore do not expect a perfect correlation between
error and entropy. At most, one could expect a correlation of 0.5.

Table 3. Correlation of entropy computed with Mitsuba and our method.

Entropy Mitsuba ↑ Time

Entropy Mitsuba 1.00 ± 0.00 5m50s
Entropy angular 0.94 ± 0.04 1.66s
Entropy power spectrum 0.88 ± 0.05 0.0005s

We study the relationship between entropy computed with our
power-spectrummodel and error in the texture maps estimated with
Mitsuba. We intentionally test the relationship between different
models to show the generalizability of our approach. In the last row
of Table 2 we show the correlation scores, which are 0.22 on average
and 0.27 for the photostudio scene. We also show qualitative results
in Figure 8. These results are optimized on images rendered under
the “rural asphalt road” environment. We observe a match between
high entropy- and high error regions. To illustrate the usefulness of
entropy, we show amask of all regions with above-average error and
a mask of regions with above-average entropy. Such masks could be
used to remove erroneous regions. We show that the entropy-based
mask covers nearly all regions of high error, while still being sparse.
This demonstrates that entropy can serve as an a-priori guide to
reduce error.

5 Applications
To demonstrate use of uncertainty and practicality of our method,
we propose three applications of entropy in the context of SVBRDF
recovery: guiding capture, sharing information, and inpainting un-
certain regions with a diffusion model.

5.1 Guiding Capture
Entropy can be applied during capture as a measure to define the
most informative viewpoints. This is challenging, because we do not
know what information can be captured from a viewpoint before
capturing it. Therefore, we propose an approach to compute the
expected entropy (i.e., information gain) from adding a new view-
point: we compute the entropy for hypothetical observations 𝐵′

𝜓

for a parameter combination𝜓 , given incoming radiance observed
from a hypothetical set of viewpoints, 𝐿′, sampled from the known
lighting. The entropy for a hypothetical observation is weighed by
the probability of the parameters responsible for that observation,
𝑝 (𝜓 |𝐵, 𝐿′) from Equation 4. The result is expected entropy

𝐸 [𝐻 ] =
∑︁
𝜓 ∈Ψ

𝑝 (𝜓 |𝐵, 𝐿′)𝐻 (𝐵′
𝜓
, 𝐿′) . (13)

We use our power spectrum approximation to accelerate this com-
putation: we first estimate the spherical harmonics coefficients for
𝐿′ and compute the hypothetical radiance 𝐵′ only in the power
spectrum, based on 𝑆𝐿′ . A set of viewpoints is then selected with
a greedy strategy, which we call best-view selection. Starting with
𝑣 ′ evenly spaced viewpoints, we compute the expected entropy for
𝑉 candidate viewpoints and select the viewpoint with the lowest
expected entropy. This is repeated until 𝑣 desired viewpoints are
selected. We compare this algorithm with farthest point sampling
(FPS) of the 𝑉 candidate viewpoints as a baseline. Our hypothesis
is that the best-view selection yields better performance, given the
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Fig. 8. Comparison of MSE for Mitsuba and entropy computed with the SH Model. We observe that where there is error, entropy tends to be higher. We also
show a mask for above-average MSE and entropy. TheMask Coverage column shows which regions of the MSE mask are not covered by the entropy mask and
should, ideally, be completely black.

FPS
FPS

Fig. 9. Plots of PSNR gain and entropy for varying input view counts on
the synthetic benchmark with the Museum environment. We observe a
significant improvement of our best-view selection (Best) over farthest
point sampling (FPS) on a paired t-test (𝑝 =1 × 10−8). Using farthest point
sampling requires 60% more views compared to using our entropy-based
capture guidance.

same number of viewpoints. In our experiment, we use𝑉 = 100 can-
didate points and 𝑣 ′ = 10 starting points. The same starting points
are used for the best-view selection and FPS baseline. We evaluate
both approaches on the synthetic dataset and compare the PSNR
gain and the average entropy over all shapes using the additional
views (see Figure 9). We observe a considerable improvement in
both the PSNR gain and entropy: the number of views required to
reach +1 PSNR gain with the FPS baseline is 60% higher than the
number of views the best-view selection requires. We also com-
pare the results with a paired t-test (pairing the same scenes) and
see a statistically significant improvement between the best-view
selection and the FPS baseline (𝑝 =1 × 10−8).

This application shows the importance of our efficient power spec-
trum approximation, as it involves a nested entropy computation.
Using our method, capture guidance requires roughly one second
per added viewpoint, while this would take roughly 45 minutes in
the angular domain and more than nine days using Mitsuba.

5.2 Sharing Information
Uncertain regions on the surface could be improved with informa-
tion from more certain regions. Prior works typically use a regu-
larizer, enforcing smoothness of the parameters over the surface
(e.g., by adding a TV-norm term [Hasselgren et al. 2022; Munkberg
et al. 2022; Sun et al. 2023]). Information is consequently shared
locally. However, a smoothness term does not distinguish between
certain and uncertain points, blurring regions that should actually
be preserved. Given our measure of uncertainty, we can develop a
more informed strategy: we would like to share information from
the most certain points to less certain points with a similar appear-
ance and allow for sharing to happen with non-neighboring points.
We choose a set of certain points,𝐶 (local minima in the uncertainty
map 𝐻 ). Next, we add a term to the regularizer that enforces other
points’ parameters to be similar to the selected points:

L𝑆 =
1
𝑇

∑︁
𝑝

∑︁
𝑞∈C

𝑤𝑝𝑞 | |𝜓𝑝 −𝜓𝑞 | |2, (14)

where 𝑇 is the number of discrete points on the surface (in our
experiments, the number of texels), 𝜓𝑝 is the parameter at point
𝑝 , and 𝑤𝑝𝑞 is a weight based on the similarity of the materials at
points 𝑝 and 𝑞. Since we do not know a priori whether two regions
consist of the same material, we use the KL-divergence between
the probability distributions 𝑃𝑝 and 𝑃𝑞 over the possible material
parameters as a similarity metric

𝑤𝑝𝑞 = exp

[
−
𝐷𝐾𝐿 (𝑃𝑝 | |𝑃𝑞)2

2𝜏2

]
. (15)

The parameter 𝜏 determines the selectiveness in finding similar
regions. We set 𝜏 as a fraction of the average KL-divergence between
𝐶 and all other points (0.4 in our experiments). The results of this
approach are compared with the baseline models using a TV-norm
in Table 2. We observe a +1.5 dB PSNR improvement for the SH
model and +0.5 dB for Mitsuba. Visual comparisons reflect these
results (Figure 6 and Figure 5, global sharing). We only show results
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Input Optimized 10 steps 20 steps Only diffusion

Fig. 10. Inpainting low-certainty results with the RGB↔x diffusion
model [Zeng et al. 2024]. We show the result of the optimization, results for
inpainting and a full diffusion model prediction on base color. Results are
shown with 10/20 steps of complete diffusion after 40/30 steps of inpainting,
striking a balance between preserving the information from the optimiza-
tion and using the diffusion model to inpaint uncertain areas.

for the SH model as the results for Mitsuba with global sharing are
visually similar, albeit slightly better.

5.3 Diffusion Model Guidance
We can use thematerial map estimated with an optimizationmethod,
together with our uncertainty map to extract material maps with a
diffusion model [Ho et al. 2020]. As a proof of concept, we inpaint
regions in the estimated albedo map with high uncertainty using
blended diffusion [Avrahami et al. 2022]. For the diffusion model,
we use RGB↔x [Zeng et al. 2024], which estimates material maps in
image space for shaded images. Following the blended diffusion pro-
cess, we perform 50 diffusion steps and replace the diffusion result
with the optimized material map for the first few steps, followed
by 𝑛 diffusion steps on the full material map. In Figure 10, we show
results on Stanford ORB and the base color parameter for four dif-
ferent variants: no inpainting, inpainting followed by 10 and 20 full
diffusion steps, and full diffusion. We observe that the results with
10 full diffusion steps (i.e., more influence of optimization results)

strike a good balance between the correct parameter values and the
diffusion model result.

5.4 Optimization: Initialization
We show that our fast estimate of BRDF parameters can be used as
a high-quality initialization for other inverse rendering approaches.
In this experiment, we initialize an optimization with Mitsuba using
the textures from the SH Model. This is optimized for one epoch,
using only 16 samples per pixel (half the samples we used for the
other experiments) and the results are included in Table 1 (last row).
This single epoch only takes 11s, resulting in a total of 16s, combined
with the initialization. This is over three times faster than the 52s
required with random initialization and achieves better performance
(+0.3dB PSNR-H).

6 Challenges and conclusion
In summary, we present an uncertainty estimation method for multi-
view capture of materials on objects using frequency domain anal-
ysis. We use least-squares fitting and a power spectrum approxi-
mation to efficiently compute entropy as uncertainty. We validate
our uncertainty estimation and demonstrate its benefits through
multiple applications, improving the quality of captured assets.
A future challenge for practical use is to enable spherical har-

monics decompositions on LDR images. Because LDR signals are
typically clamped, they introduce frequencies that are not present in
the original signal, conflicting with the frequency analysis. Another
direction is extending the framework for situations with unknown
lighting, which requires computing entropy over hypothetical light-
ing setups. We believe frequency analysis for uncertainty estimation
provides a powerful and practical tool for understanding and improv-
ing object capture approaches and look forward to its applications
in future work.
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