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A Details on- and Extensions to the Convolution Model

In this section, we provide a derivation of the convolution model

for re�ection. This derivation does not add technical novelty, but

provides clarity on certain details that were implied in the original

paper by Ramamoorthi and Hanrahan. We also propose a simple

extension to the convolution model to include shadowing and mask-

ing e�ects, which were ignored by Ramamoorthi and Hanrahan.

Finally, we discuss how to map the parameters of the Torrance-

Sparrow BRDF to the Disney Principled BRDF [Burley 2012], which

is commonly used in modern rendering pipelines.

A.1 Derivation of the Convolution Model

The outgoing radiance at point ? along direction l> , !> (?,l> ) is
given by

�(?,l> ) =
∫

� 2 (n)
5A (?,l> , l8 )!(?,l8 ) cos\83l8 , (1)

where 5 is the BRDF and !(?,l8 ) is the incident radiance along

direction l8 . For the Torrance-Sparrow BRDF, 5 is de�ned as

5 (?,l> , l8 ) =  3 +  B
� (l<)� (l> · l<)� (l8 , l> )

4 cos\8 cos\>
, (2)

where l< is the half-direction vector l< = (l8 + l> )/| |l8 + l> | |;
� (l<) is the normal distribution function; � (l> ·l<) is the Fresnel
term. Ramamoorthi and Hanrahan simplify this term to � (\> ), as the
angle \> is often close to the angle between l> and l< ;� (l8 , l> ) is
the shadowing-masking term. Ramamoorthi and Hanrahan ignore

� . We assume shadowing and masking are independent statistical

events, so that � (l8 , l> ) =� (l8 )� (l> ).
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There are two important notes about the denominator in Equa-

tion 2:

(1) 1/(4 cos\> ) results from the half-direction transform: the

distribution of microfacets with a normal l< is transformed

to the distribution of outgoing directionsl> that the incoming

light ray l8 re�ects toward (see Pharr et al., Equation 9.27).

(2) 1/(cos\8 ) cancels out the cosine term applied to the incoming

radiance (see Pharr et al., equation 9.30).

We now substitute Equation 2 into Equation 1 and split the equa-

tion into di�use and specular

�(?,l> ) =  3
∫

� 2 (n)
!(?,l8 ) cos\83l8 (3)

+  B
∫

� 2 (N)

� (l<)� (l> · l<)� (l8 , l> )
4 cos\8 cos\>

!(?,l8 ) cos\83l8

This equation is simpli�ed by Ramamoorthi and Hanrahan using

the assumptions that � only depends on \> and shadowing-masking

is ignored. We replace the integral of incoming radiance for di�use

with the symbol for irradiance �.

�(?,l> ) =  3� (?) +  B� (\> )
∫

� 2 (N)

� (l<)
4 cos\>

!(?,l8 )3l8 . (4)

Ramamoorthi and Hanrahan rewrite the specular term as a con-

volution between a �lter based on � , and !. Crucially, the domain

of � in the Torrance-Sparrow model is the half-angle space. In

Ramamoorthi and Hanrahan’s derivation, the spherical harmonic

representation for this �lter, in the paper referred to as ( , is derived

in incoming-direction space for normal exitance (Ramamoorthi and

Hanrahan, Equation 27). This has two consequences:

(1) We do not have to account for a change of variables and

1/(4 cos\> ) can be removed.

(2) In reality, ( depends on the outgoing direction that is observed

and thus, the �lter changes shape. This variation is ignored

with the explanation that “the BRDF �lter is essentially sym-

metric about the re�ected direction for small viewing angles,

as well as for low frequencies ; . Hence, it can be shown by

Taylor-series expansions (and veri�ed numerically) that the

corrections to Equation 20 [Equation 13 in our paper] are

small under these conditions.”

This means that we can rewrite Equation 4 with a convolution

�(?,l> ) =  3� (?) +  B� (\> ) [( ∗ !]l>
, (5)

which equals Equations 21 and 22 in Ramamoorthi and Hanrahan.
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Fig. 1. A comparison of the options for fi�ing spherical harmonics on sparse samples. In the first column, top: incoming radiance (synthetic) on the sphere
mapped to a lat-long grid. Middle: synthesized outgoing radiance as a result of filtering incoming radiance with Equation 13, U = 0.2. Bo�om: power spectra
of incoming and outgoing radiance and ground-truth filter (BRDF) plo�ed on a log-scale. In the second to fi�h column, we show the result of fi�ing spherical
harmonics coe�icients to samples and then transforming back to the spatial domain. We use 100 samples from the upper hemisphere of the input radiance (first
column) and simulate missing samples due to occlusion or missed camera positions by masking some points, leaving 88 samples. The samples are weighted
with cos\ , which is visualized as the transparency of the samples. We find that our method with a weighted regularizer is able to smoothly interpolate missing
values and retrieves the correct BRDF filter in the power spectrum, where other variants overfit, or add dark regions in the upper hemisphere. I am wondering
if this figure should actually go to an evaluation section of this contribution

A.2 Shadowing and Masking

The approximate re�ection function in Equation 5 does not in-

clude the shadowing or masking terms present in microfacet mod-

els [Pharr et al. 2023]. These terms model occlusions of incoming

light (shadowing) and outgoing light (masking) due to the con�gu-

ration of the microfacets. Ramamoorthi and Hanrahan argue that

these terms can be ignored, because they mostly a�ect observations

made at grazing angles. While this is true for materials with low

roughness, we �nd that ignoring this term can lead to an appearance

mismatch for high-roughness materials. We propose a simple way

to include these terms in the convolution model to study the e�ect

on uncertainty and BRDF acquisition. Shadowing and masking ef-

fects are typically modeled jointly to avoid an over-correction of

the radiance (Pharr et al. [2023], Section 9.6.3). However, this joint

term breaks the convolution model as presented in Equation 5, as

the kernel would depend on both l8 and l> . Therefore, we assume

that shadowing and masking are independent and model them as

�U (l8 )�U (l> ). We �rst attenuate the incoming light with the shad-

owing term, convolve with the BRDF and attenuate the result with

the masking term:

�(?,l> ) ≈  3� (?) +  B� (\> )�U (\> ) [(U ∗�U (\8 )!(?)]l>

, (6)

where �U is the shadowing-masking function in the Trowbridge

and Reitz model.

A.3 Torrance-Sparrow to Principled BRDF

Many modern rendering pipelines employ variants of the Disney

BRDF [Burley 2012], which is a combination of a di�use term and a

microfacet term with a user-friendly parametrization. The model

also contains some additional features beyond the scope of the cur-

rent work. We can formulate our model using the principled BRDF

parameters, rather than the raw parameters of the Torrance-Sparrow

model. We parameterize base color, metallicity, and roughness, map-

ping these to the Torrance-Sparrow model as

 3 = '1 , (7)

 B = 1, (8)

'0 = 0.04 + ('1 − 0.04)<, (9)

� (\> ) = '0 + (1 − '0) (1 − cos\> )5, (10)

U = A 2, (11)

where '1 is the base color,< is metallicity and A is the roughness.

We set  B to 1, because the specular component is already scaled in

the Fresnel term by '0. This parameterization is based on Schlick’s

approximation [Schlick 1994] and follows the implementation in

Mitsuba [Jakob et al. 2022].

B Least-Squares Regularization

We experiment with a number of options for least-squares �tting

and show the results in Figure 1. In these experiments, we found

that no regularization and constant regularization lead to incorrect

estimations of the BRDF, which can be retrieved as the ratio of

the outgoing radiance over the incoming radiance power spectrum.

Our proposed solution using a non-constant regularizer leads to

a smooth interpolation of missing regions. While it also ‘blurs’

the incoming radiance, the relative relation between incoming and

outgoing radiance is preserved.
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C Sampling Theory

The transformation from the directional domain to spherical har-

monics begs the question: do we have enough samples to accurately

recover the coe�cients of the outgoing radiance? We know from

Equation 13 that the BRDF acts as a low-pass �lter parameterized

by U . We connect this knowledge with sampling theory to derive

lower bounds on sampling counts.

The Nyquist-Shannon theorem provides a lower bound on the

number of samples required to exactly recover a band-limited signal

using a Fourier series. Similar theorems have been developed for

spherical harmonics [Driscoll and Healy 1994; McEwen et al. 2011;

McEwen and Wiaux 2011]. These state that, to recover a spher-

ical signal with band-limit ℓ∗, the number of samples should be

O(ℓ∗2). The sampling rate and related band-limit have direct con-

sequences for BRDF recovery. Assume that the incoming light has

been sampled at a high enough rate to be accurately recovered, for

example, from projected photographs or a gazing sphere. Then the

outgoing light is the weakest link, as it is sampled by moving the

camera along # positions around the object. Sampling theory tells

us that we can only accurately recover outgoing radiance that is

band-limited to ℓ∗ <
√
# degrees. Signals with non-zero amplitude

in higher degrees will su�er from aliasing.

Fortunately, the BRDF acts as a low-pass �lter on the incoming

radiance (Equation 13). That means the outgoing radiance can fall

into two categories, based on the U parameter of the material (U =

roughness2): U is either too low or U is high enough to recover

spherical harmonic coe�cients. If U is too low, the low-pass �ltering

from the BRDF does not band-limit the signal enough to accurately

recover with the given sampling rate. The threshold for U can be

determined based on Equation 13. Let C be an acceptable attenuation

factor for degrees ℓ > ℓ∗. We solve Equation 13 for C to �nd the

lower bound, U ′, for accurate recovery

U ′ = ℓ∗−1
√
− ln C . (12)

An acceptable threshold C can be determined empirically, by investi-

gating the reconstruction error for a set of environment maps. To

provide some intuition, for # = 400 samples and a threshold of

C = 0.5, U ′ ≈ 0.07. Above this threshold, our method can recover

U and  B , provided that the incoming radiance has enough ampli-

tude in the right degrees. This also extends to non-uniform samples,

because the Nyquist-Shannon theorem holds for non-uniform sam-

ples [Marvasti 2012]. In other words: if a lower bound on U is known,

it does not matter where the camera is placed, as long as the average

distance to the closest sample is equal to 1/# . It also means that one

can determine the number of required views based on the lowest U

that should be recovered: # ∼ U−2.
It is important to understand what happens if U < U ′. First, we

would be uncertain where U lands between 0 and U ′, based on the

power spectrum alone. For 0 < U < U ′, Equation 13 is close to 1 for

all degrees below ℓ∗. Second, because this situation occurs for low

U , the outgoing radiance should be similar to the incoming radiance,

up to a scale factor for absorption and transmission. It is unlikely

that the spherical harmonics decomposition with signi�cant aliasing

will match a �ltered version of the incoming radiance. Therefore,

we can detect that U < U ′. In this case, the MSE for any parameter

combinationk is relatively high. Once such a case is detected, we

know that our spherical harmonic-based analysis provides no fur-

ther insights on (un)certainty. There is still a chance for accurate

BRDF recovery if U < U ′. A sample might land on a fortunate spot

in the outgoing radiance �eld. This is the case when there is high

local variation in the incoming light around the sample locations,

resulting in large changes in radiance for small changes in U .

D Background

Our method builds on prior work in inverse rendering and spherical

harmonics. We summarize required background knowledge and

refer to related work for further depth.

D.1 Reflection as Convolution

In the inverse rendering framework of Ramamoorthi and Hanrahan

[2001], detailed in subsection A.1, estimating the specular BRDF pa-

rameters comes down to estimating the convolution kernel ( . This

can be done e�ciently since a convolution in the angular domain

can be represented as a multiplication in the spherical harmon-

ics frequency domain. Using this representation, one can �nd the

convolution kernel through a division of the spherical harmonics

coe�cients of the outgoing radiance by those of the incoming radi-

ance. This is analogous to kernel estimation for image deblurring in

the Fourier domain. Ramamoorthi and Hanrahan derive a number of

conclusions from this insight, which we summarize in this section.

One crucial insight concerns the well-posedness of BRDF recov-

ery. Ramamoorthi and Hanrahan state that the recovery of BRDF

parameters is ill-posed if the input lighting has no amplitude along

certain modes of the �lter (BRDF). Those modes cannot be estimated

without additional priors on plausible spatial parameter variations.

For the microfacet BRDF, this leads to the following conclusion:

if the incoming light only contains frequencies ℓ << U−1, multi-

plying the coe�cients of the light with those of the BRDF only

results in a small di�erence, and the inversion of this operation is

ill-conditioned. To accurately estimate U , the incoming light used

during the capture needs to exhibit su�ciently high frequencies.

This insight is based on a derivation for the coe�cients of the

microfacet model. The normalized SH-coe�cients of the specular

component of the BRDF for normal incidence, ( , are approximated

by

5̂ℓ< ≈ 4−(Uℓ )2 , (13)

which is a Gaussian in the frequency domain with a width deter-

mined by U . The kernel is derived from a Beckmann normal distribu-

tion function and the U parameter corresponds to the U parameter

there. Note that these coe�cients do not vary with the Spherical Har-

monics order<, since the normal distribution function is isotropic

for outgoing rays in the direction of the normal vector (\> = 0). An

important approximation employed by Ramamoorthi and Hanrahan

is that this same kernel can be used for any outgoing direction.

While the correct kernel varies with the incoming and outgoing

direction, this approximation does not lead to signi�cant error for

inverse rendering [Ramamoorthi and Hanrahan 2001] as they note

that “it can be shown by Taylor-series expansions and veri�ed numer-

ically, that the corrections to this �lter are small [for low degrees

ℓ]”.
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In this paper, we expand on the theory established by Ramamoor-

thi and Hanrahan by improving the re�ection as a convolution

model’s accuracy and developing the implications forwell-posedness

into quanti�able metrics on uncertainty without a-priori knowledge

on U .

D.2 Spherical Harmonics

Spherical harmonics are a series of orthonormal basis functions on

the sphere, indexed by their degree ℓ and order <. We use them

to represent incoming and outgoing radiance over incoming and

outgoing directions on the unit sphere. Spherical harmonics are

analogous to the Fourier series on a �at domain, where the frequency

of the Fourier series corresponds to the degree ℓ and order<. We

provide a brief overview of properties relevant to our method. For

further details, a helpful reference and software package is published

by Wieczorek and Meschede [2018].

Any real, square-integrable function on the sphere can be ex-

pressed as a spherical-harmonics series:

5 (\, q) =
∞
∑

ℓ=0

ℓ
∑

<=−ℓ
5ℓ<.ℓ< (\, q), (14)

where 5ℓ< is the coe�cient for spherical harmonic .ℓ< (\, q), given
as

#ℓ< =

√

(2 − X<0) (2ℓ + 1)
4c

(ℓ −<)!
(ℓ +<)! (15)

.ℓ< (\, q) =
{

#ℓ<%
<
ℓ (cos\ ) cos<q if< ≥ 0,

#ℓ<%
|< |
ℓ (cos\ ) sin |< |q if< < 0.

(16)

#ℓ< is a normalization factor, X<0 is the Kronecker delta function,

which evaluates to 1 when< = 0, and %<ℓ is the associated Legendre

function for degree ℓ and order<. The total number of spherical

harmonics up to- and including a maximum degree, ℓ∗, equals (ℓ∗ +
1)2. A useful property of spherical harmonics in our setting is that

a rotational convolution on the sphere is equal to multiplication of

coe�cients in the spherical harmonic domain.

The power spectrum of a spherical function 5 can be computed

from the spherical harmonic coe�cients per degree

( 5 (ℓ) =
ℓ

∑

<=−ℓ
5 2ℓ< . (17)

The power spectrum is invariant to rotations of the coordinate

system. In our context that means the power spectrum is invariant

to slight perturbations of the normals at each point.

D.2.1 Computing spherical harmonic coe�icients. One can �nd the

SH coe�cients for a function 5 by computing the inner product

with the basis functions

5ℓ< =

∫

(2
5 (\, q).ℓ< (\, q)3l. (18)

A useful property holds for the coe�cient of degree ℓ = 0, for

which the spherical harmonic is constant; .00 (\, q) = (4c)− 1
2 . The

corresponding coe�cient, 500, is equal to the integral of 5 times

the normalization constant, (4c)− 1
2 . The spherical harmonics for

Table 1. Benchmark Comparison for Novel Scene Relighting of Existing
Methods from [Kuang et al. 2023].† denotesmodels trainedwith the ground-
truth 3D scans and pseudo materials optimized from light-box captures. The
rest of results are obtained by optimizing jointly for illumination, geometry
and material. We report these numbers for reference, however they cannot be

directly compared to our results.

PSNR-H↑ PSNR-L↑ SSIM↑ LPIPS↓
NVDi�RecMC [Hasselgren et al. 2022] † 25.08 32.28 0.974 0.027
NVDi�Rec [Munkberg et al. 2022] † 24.93 32.42 0.975 0.027

PhySG [Zhang et al. 2021a] 21.81 28.11 0.960 0.055
NVDi�Rec [Munkberg et al. 2022] 22.91 29.72 0.963 0.039
NeRD [Boss et al. 2021] 23.29 29.65 0.957 0.059
NeRFactor [Zhang et al. 2021b] 23.54 30.38 0.969 0.048
InvRender [Wu et al. 2023] 23.76 30.83 0.970 0.046
NVDi�RecMC [Hasselgren et al. 2022] 24.43 31.60 0.972 0.036
Neural-PBIR [Sun et al. 2023] 26.01 33.26 0.979 0.023

higher degrees all integrate to zero1. This is relevant in the context

of rendering, because the total integrated incoming and outgoing

radiance can be read from the 0Cℎ degree coe�cient and that coe�-

cient alone. In the general case, we estimate the coe�cient for 5ℓ<
based on samples of 5 . The sampling method determines how these

coe�cients are estimated.

Regular sampling. If 5 is sampled on a grid with equally spaced

longitudinal and latitudinal angles, this integral can be accelerated

using a fast Fourier transform in the longitudinal direction q and

a quadrature rule in the latitudinal direction \ [Driscoll and Healy

1994]. In our setting, this approach can be used for environment

maps represented as rectangular textures.

Irregular sampling. During capture the camera is often placed at

irregular positions, leading to non-uniform (\, q) samples. Further,

a point on the surface might be observed from only a few positions.

We therefore often need to use sparse and irregular samples to �t

spherical harmonic coe�cients. We do so by �tting the coe�cients

using least-squares, expressing Equation 14 as a linear system

Yc ≈ f, (19)

where f is a vector of = discrete samples from 5 , Y is a matrix of

size = × (ℓ∗ + 1)2 containing the spherical harmonics sampled at the

same locations as f , and c is a vector of the (ℓ∗ + 1)2 coe�cients we

want to �nd. We can �nd c by solving a least-squares system

Y
⊺
Yc = Y

⊺
f . (20)

To be well posed, this system requires = > (ℓ∗ + 1)2 independent
samples, which can be challenging in the context of sparse sampling,

making the system under-constrained. We propose to use a custom

regularizer in our work for cases where the number of samples is

too low.

E Stanford ORB Reference Results

We include the results table from StanfordORB for reference. These

results were obtained under di�erent acquisition condition and

cannot be directly compared to our results.

1Because the spherical harmonics are orthormal, the inner product between any spher-
ical harmonic with ℓ > 0 and the constant function (ℓ,< = 0) equals zero.
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